
J .  Fluid Mech. (1986), wol. 171, p p .  365-375 

Printed in Great Britain 
365 

The special relativistic shock tube 

By KEVIN W. THOMPSON 
Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA 

(Received 7 November 1985 and in revised form 24 February 1986) 

The shock-tube problem has served as a popular test for numerical hydrodynamics 
codes. The development of relativistic hydrodynamics codes has created a need for 
a similar test problem in relativistic hydrodynamics. The analytical solution to the 
special relativistic shock-tube problem is presented here. The relativistic shock-j ump 
conditions and rarefaction solution which make up the shock tube are derived. The 
Newtonian limit of the calculations is given throughout. 

1. Introduction 
The shock-tube problem has long served as a popular test for numerical hydro- 

dynamics codes, as in Sod (1978), because the solution in the perfect-gas case can be 
obtained analytically, and because the shock tube is a time-dependent problem 
whose solution contains discontinuities. Discontinuities pose a challenge for numerical 
solution methods, since finite-difference approximations to derivatives only make 
sense when applied to continuous functions. 

The more recent development of relativistic hydrodynamics codes by Centrella & 
Wilson (1984) and Thompson (1985) has created a need for analytical solutions to 
relativistic fluid-dynamics problems, against which the codes may be tested. This 
paper develops the analytical solution to the special relativistic shock-tube problem 
for the constant-y equation of state, superceding the more limited solution obtained 
by Wilson and the author in Centrella & Wilson (1984). 

2. Description of the problem 
The fluid is characterized by a rest mass density p (= rnn, where n is the number 

of particles per volume and m is the particle rest mass, measured in the fluid frame), 
a pressure p ,  and a 4 velocity U (= dx/d.r, the derivative of the fluid-element 
coordinate with respect to proper time), assuming motion is allowed only in the 
2-direction. We also have the following auxiliary relations : 

v =  u / w ,  (1) 

(2) 

p = (y-l)E, (3) 

w = (1 + P): = l / ( l -  vzp, 

r 
CT = p + E + p  = p+--p, 

Y-1 
(4) 

8 = pp-7 (provided y = constant), ( 5 )  

where V is the physical velocity (dxldt, where t is the coordinate time), w is the 
Lorentz factor, E is the thermal energy density, and s is a measure of the entropy. 
The units are such that the speed of light is unity (hence V < 1 ) .  
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FIQURE 1 .  A special relativistic shock tube. 

It remains to specify an equation of state for the fluid, by defining the quantity 
y which appears in (3) .  For a monatomic Newtonian gas y = f. For a monatomic 
relativistic gas, y is a function of temperature, starting at t in the low-temperature 
limit where p 4 p, and decreasing monotonically to the high-temperature limit of $ 
when p p. The complete temperature dependence is derived by Lightman et al. 
(1975), and given by Thompson (1985) as 

y = [ 1 + /3 (%- I )  + 311, /3 = - P 
P ’  

where K ,  is the modified Bessel function of the second kind of order n.  Solving the 
rarefaction and shock equations with y given by (6) is beyond the scope of this paper, 
and would probably require a numerical integration of the differential equations. The 
case y = constant is considered below. The assumption of constant y is valid in the 
Newtonian (y = t )  and extreme relativistic ( y  = b) limits, and should be a good 
approximation for the case p x p provided that  the ratio p / p  does not vary much 
in the problem a t  hand. 

The shock-tube problem is as follows. At  time t = 0 we have a stationary fluid in 
two different states, separated by a partition. Each state is unifwrn. The partition 
is removed a t  t = 0, and the higher-pressure fluid expands, pushing the lower-presaure 
fluid in front of it. For definiteness, assume that the initial interface is at x = 0, and 
that the higher-pressure gas is on the left (z < 0). Then as time goes on, the initial 
jump becomes a similarity solution in 6 = z / t ,  comprised of five regions numbered 
1-5 from left to right, whose general appearance is given in figure 1. 

Region I is the undisturbed leftmost state, whose right boundary a t  x = f ,  t moves 
to the left with time (6,  < 0). It is stationary (V, = 0) and characterized by values 
p = p, and p = p ,  from the initial conditions on the left. 

Region 2 is a rarefaction. I ts  leftmost boundary (the rarefaction wave) moves to 
the left a t  constant velocity < 0. The fluid in the rarefaction moves to the right 
with a velocity I/ = I/,(<). The density and pressure are p = p,(k) and p = p,(E). The 
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density and pressure decrease with g, while the velocity increases. The right 
boundary is a t  x = Ezt .  

Region 3 is a plateau, with p = p3, p = p,, V = V, all constant. I t s  left boundary 
is a t  x = 6, t ,  and its right boundary is a contact discontinuity at x = E, t .  

Region 4 is a second plateau, with p = p,, p = p, ,  V = V, all constant. I t s  left 
boundary is the contact discontinuity a t  x = t3t, and its right boundary is a 
right-moving shock wave a t  x = g, t .  

Region 5 is the undisturbed region to the right of the shock at x = 6, t ,  into which 
the shock is moving. Its constant state of p = p,, p = p,, V = 0 is the same as the 
initial conditions on the right. 

The figure shows a shock tube defined by p, = 1 ,  p ,  = lo4, p, = 0.1, p ,  = 10, and 
y = $ throughout (the extreme relativistic limit, consistent with the specified 
pressure and density), a t  time t = 0.5. Note that the density jump across the shock 
is 8.9, exceeding the Newtonian maximum of 7 .  

3. The shock jump 
The two principal elements of the solution are the rarefaction and the shock wave. 

The jump conditions for a relativistic shock wave are derived in this section. 
A shock wave is a surface of discontinuity, across which the density, pressure and 

normal velocity are discontinuous. A reference system can always be found in which 
the shock is stationary, and fluid flows through the standing shock. Since thc fluid 
quantities are finite (though discontinuous) at the shock, i t  follows that the mass, 
momentum and energy fluxes are continuous across the shock in this frame 
(otherwise the fluid would ‘pile up’ at the shock). 

The shock-jump conditions relate the states on either side of the shock, and are 
based on the continuity of fluxes in the shock’s comoving frame, as demonstrated 
by Taub (1948, 1967). To derive these conditions, we begin by writing the one- 
dimensional relativistic fluid equations of Thompson (1  985), which represent con- 
servation of mass, momentum and energy respectively : 

a a aP a 
-(pw)+-(pU) = o + - + - ( p V )  = 0, at ax at ax 

a a a a 
-((crwU)+-((aUZ+p) = O+-(pV)+-(pVZ+p) = 0, 
at ax at ax 

(7)  

(9) 
a a a a 
- ((rw2-p) + - (crw U )  = o+- ( E  ++p VZ) +z [(€ + p  ++ p V2) v] = 0, 
at ax at 

where the arrows represent the Newtonian limits. (Strictly speaking, the right-hand 
side of (9) is not the Newtonian limit of the left-hand side, since the left-hand side 
represents the conservation of total energy, including rest mass, while the right-hand 
side represents conservation of thermal and kinetic energies only. However, one 
performs essentially the same calculations with either side to  get the shock-jump 
conditions below.) 

Now consider a coordinate system x’t’ in which the shock is at rest, moving with 
a constant 4 velocity Us (and a physical velocity V,  = Us/ws < 1) with respect to the 
original system. The Lorentz transformation connecting the two systems is 

x’ = -U,t+w,x+- &t+x,  (10) 

t’ = w,t- U,x+t. (11) 
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Thus the derivatives transform as 

(14) 

(15) 

in the x’t’ system. (If Us varies with time or the geometry is not rectangular the 
derivation becomes more complicated, but the results obtained below are 
unchanged. ) 

Let the two sides of the shock be denoted 1 and 2, and the shock position by xi. 
Then integrating (15) from xi - h t o  xi + h gives 

-+- af as = 0 

~ c w , f - u , s , + ~ c w s s - ~ s s f ,  = 0 + 7 + 7 ( g -  at ax K f )  = 0 

at ax 
and the equation 
becomes 

a a af a 

As h+O the time-derivative term vanishes. The result is 

1 

assuming that y is the same on both sides of the shock. 

them in other forms. For the Newtonian limit, we have the following results : 
The above equations are not very useful as written. It is more convenient to  rewrite 
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v , = v , +  (PZ -~ Pz-P1):  = j,r*( PI P 1 - P z ) i  
P1 Pz - P I  Pz P1- Pz ' 

- Pz K-P1 K 
Pz - P1 

V , -  

Although p z / p l  can take on any value from 0 to oc), (24) implies that 

i.e. the maximum density jump is finite and depends on y.  The density of the gas 
can change at  most by a factor of 4 if y = 8, or 7 if y = #. 

The relativistic shock equations are much more complicated and do not lend 
themselves to expressions that are both simple and general. It is more fruitful to look 
at two special cases instead, the strong shock and general shock cases, both with 
Ul = V, = 0, w1 = 1 .  We get 

P1 v, = Pz Wz(v,--  v,), 
~2 U ; + P ~  = V,gzw, uz+p l ,  

(28) 

(29 1 

V, (~zw; -Pz ) - - zwz  uz = K(C1-PA (30) 

from which we obtain the relations 

v,(ffzw:-pz-P1--P1)-ffzw~ 1 u, = 0. 

Y - 1  

If the shock is strong, p ,  can be neglected throughout, giving 

Pz = P l [ Y ~ ; - ~ Y - ~ ) w Z - - l ~  

P2 =PI- YWZ + 1 = P 1 [ y + 1 + Y ~ W z - l ) ] ,  
Y-1 y - 1  y-1 

1 +- y q  v,= Y - 1  p, 
P1 +--II-wz Pz UZ' 

Y - 1  

(33) 

(34) 

(35) 

Thus if the pre-shock density p1 and the post-shock velocity U,  are known, the 
remaining variables are given. Note that the density jump can be arbitrarily large, 
unlike the Newtonian case. 

In the more general case p ,  =f= 0, and simple analytic solutions for p , ,  pz and V,  
as functions of pl ,  p ,  and Uz are not available. However, if pl, p1 and U ,  are given, 
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then p2 and V,  can be considered functions of the unknown variable p ,  through (31) 
and (32), and (33) then defines the only valid p ,  which satisfies all three equations. 
Write 

Then the equation fb,) = 0 (38) 

can be solved by a Newton's-method iterative technique, as described in the 
Appendix. 

4. The rarefaction 
The rarefaction solution in region 2 is a continuous function, and is obtained by 

solving the fluid equations. The solution technique is similar to that of Mathews 
(1971), who found a similarity solution for the hydromagnetic free expansion of a 
relativistic gas. 

The density and velocity equations for constant y ,  given by Thompson (1985), can 
be written as 

(39) 
a a aP a -(pw)+-(pU) = O+-+-(pV) = 0, 

at ax at ax 

0- w-+u- - y p u  -+- +-=o+-+v-+--=o ( F 3 (E 3 2 at ax pax  9 
(40 1 

av av l a p  

where the Newtonian limits are given by the arrows. The entropy is constant and 
equal to that of the original left state, the flow is adiabatic, and y is assumed 
constant, so that 

where s = plp ,r  is constant. Assuming that all quantities depend on x and t only 
through the combination 6 = x / t  gives 

(41) p = spy ,  

a I d  
ax t dg' 
- --- - 

and we get, after a little algebra, 

(43) 

(44) 
dP P dU dp dV (v-g)-+-(l-vg)-= o+(v -g ) -+p-=o ,  
d t  w dg d6 d6 

-- +[v-g-c2v(l-vg)]-= O + - - + ( V - t ) -  = 0, 
WP d5 d t  P d-5 dfl 

(45) 
c2 dp dU c2 dp dV 

where the speed of sound c is given by 

Equations (44) and (45) are homogeneous equations for dp/d( and dU/dg (or 
d v/d(), and possess non-trivial solutions only if the determinant of the coefficient 
matrix vanishes. Thus 

w2( v-g)"Cyl- V6)[1 +W2V( v-g)] = o+ ( V - [ ) 2 - C 2  = 0. (47) 
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We see immediately that the point where V = 0 has 6 = El = -cl (choosing the minus 
sign to correspond with the orientation chosen), where c1 is the sound speed of the 
undisturbed fluid in region 1. That is, the rarefaction wave moves into region 1 at 
the local speed of sound. If the fluid were expanding into a vacuum on the other side 
(i.e. if region 5 were a vacuum), the leading edge would have expanded infinitely and 
cooled to the point where c = 0, in which case 6 = V = V,,,. (Note that  6 goes from 
-cl to V,,, as V goes from 0 to V,,,.) However, the value of V,,, cannot be 
determined from (47). 

Since (47) holds, we know that (44) and (45) are equivalent. Thus we can write 

Solving (47) for 6 gives 
c 6 =  v- +lg= V-c. 

WZ(1-CV) 
Substituting for 6 in (48) gives 

Now define 

(49) 

Separating (50) and integrating from y1 = y(pl) to y ,  = y(p,) with respect to y ,  and 
integrating from U = 0 to U,  with respect to U gives 

where f ( x )  = x+ (1 + X Z ) i ,  

Now p and p are known functions of U .  Note that p decreases as U increases, as 
required by (50). We can also solve for U as a function of p (through y as defined 
in (51)): 

Given U and p,  V is defined by 

and 6 is given by (49). Note that 
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The Newtonian limit is simpler. We have the relations 

2 / ( Y  - 1) Y-1 v, 

5. The complete solution 
Now for the remainder of the shock tube. We have already seen that El = -cl. We 

also know that p3 = p2(E2), p ,  = p2(E2),  V, = V , ( E 2 ) ,  P, = p2(E2), V, = V , ( E 2 ) .  Since the 
contact discontinuity moves at the local fluid velocity, i t  follows that 6, = V,. Thus 
we need to find E2, 6, and p,. 

We already have the rarefaction solution, which can be put in the form p = p,( U )  ; 
i.e. the pressure in the rarefaction is a given function of U once the original left state 
is specified. The rarefaction relation between p and U also holds in regions 3 and 4 
(p and U are simply constant with position there, but are related to each other in 
the same way as in the rarefaction). On the other hand, the shock-jump conditions 
of $3 (given values for p5 and p 5 )  provide a second expression p = p,( U )  for the 
pressure behind a shock, when the shocked fluid has a velocity U .  Thus we have two 
equations jn two unknowns, which give U,  (and hence p 4 )  as the solution to  

(65) 

The function F( U )  defined in (65) has the value p ,  -p5  > 0 for U = 0 and decreases 
as U increases, passing through zero at U = U,. A Newton's-method iteration of the 
form 

F(U4) = PAU,)-P,(U,) = 0. 

gives a sequence of approximations which converge to U,. For an initial guess UO, 
guaranteed to converge t o  U,, choose the velocity for adiabatic expansion into a 
vacuum (Urn,,) given by (57) with p2 = y2 = 0:  

A numerical approximation to  the derivative of the form 

dF F( U +  h)  -F(  U - h )  
dU= 2h 

is used, with h = min( UO/lOO, I Un - Un-l 1/10). 
Having obtained U,, we get p ,  from the shock-jump conditions or the rarefaction 

equations. Then V,, V,, E,, p , ,  p,, and E2 follow from the continuity conditions across 
the contact discontinuity and the rarefaction solution. We get p4 and the shock 
velocity 5, from the shock-jump conditions, and the solution is complete. 
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A complication occurs if we want to evaluate the solution at a particular x and 
t, corresponding to a particular f = z/t .  If f is not in region 2 the evaluation is 
straightforward, since it is one of the constant states. If f is in region 2, there is a 
problem, because p and p are given in terms of U ,  not f ,  and we need to determine 
U (or, equivalently, V )  as a function of f .  Equation (49) is a nonlinear equation for 

(68) 
V, given (. We solve C 

f ( V )  = V-6- = o  
w2(1-cV) 

for V, where w and c are known functions of V ,  and where V is known to lie in the 
interval 0 < V < V,,, = Umax/wm,, < 1. Once more Newton’s method is used, just 
as in (66). In the Newtonian limit f (  V) is linear, so we take as a starting guess the 

f(0) 
f( VmaJ -f(O) * 

linear interpolation 
P = - v,,, 

In  the Newtonian case more of the work can be done analytically. Matching the 
rarefaction and shock pressures ultimately gives a nonlinear equation for the shock 
velocity V,( = f4). The equation is 

Denoting the right-hand side by A, we can write 

G-Av,-ct = 0, 

which can be solved by the rather simple iterative algorithm 
vn+1 = 
s + [ (Any + 4C$}, 

where 

and c5 is the sound speed in region 5. In  the vacuum limit, p5 = c5 = 0, and 

Given V,, the values of p4 and pa are obtained from the shock-jump equations. The 
other variables follow from the rarefaction solution and the continuity conditions for 
the contact discontinuity. Since the Newtonian rarefaction is written explicitly in 
terms of (, no difficulties are encountered in evaluating it for a given (-value. 

v,+ (Y + l/Y- 1) C l .  

6. Summary 
This paper presents an analytical solution to the relativistic shock-tube problem, 

subject to the constraint y = constant. The solution is ‘analytical’ in the sense that 
it does not require the numerical solution of the original differential equations, 
although the numerical solution of algebraic equations is required, largely because 
the most general shock jump is considered. This solution therefore supercedes that 
given in Centrella & Wilson (1984) in two respects: the earlier work entailed the 
numerical solution of the differential equations ; and considered only the more 
tractable case of strong shock jumps. The current solution is not only easier to 
evaluate but covers a broader class of problems. 

This work was supported by the NASA Graduate Student Researchers Program. 
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Appendix. Solution of the relativistic shock-j ump equations 

pi for p2, a sequence of improved estimates is obtained from 
We want to solve for p 2  in f@,) = 0, with f(p,) given by (37). Given an initial guess 

where 

and where 

Y A = P,-P,+-P2u2,, 
Y-1 

c = wz(132-PJ-P1 U;. (A 12) 

The function f(p,) is a monotonically decreasing function for p, > pmin, where 

P1 u2, 
Pmin = Pi +- 

w2 

is the value of p 2  for which C is zero and f is infinite. A reasonable starting guess is 
then pi = 2pmin. To prevent a new estimate p!+l from going below pmin, perform the 
replacement 

after each iteration. On a computer with 64-bit arithmetic (double precision for 32-bit 
machines, single precision for the Cray 1 and Cray X-MP machines) this algorithm 
converges to  the correct answer provided that U ,  < 700. For U ,  > 700, rounding 
errors make the results invalid. (The convergence properties were determined by 
comparison to a double precision implementation of the algorithm on the Cray 

p;+l+ max[ p;+l, (1 + 1O-l0) pmin] (A 14) 

X-MP.) 
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